Sains Malaysiana 54(8)(2025): 1927-1944

http://doi.org/10.17576/jsm-2025-5408-05

 

A Series of Modified Mordenite for Green Fuel Production from Oleic Acid

(Suatu Siri Mordenit Terubah Suai untuk Pengeluaran Bahan Api Hijau daripada Asid Oleik)

 

KHOIRINA DWI NUGRAHANINGTYAS1,*, SOFIA AULIA MUKHSIN1, RIZKI LUKITAWATI1, FITRIA RAHMAWATI1, I F NURCAHYO1, ENY KUSRINI2,3,4 & YUNIAWAN HIDAYAT1

 

1Department Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, 16424, Indonesia

3Research Group of Green Product and Fine Chemical Engineering, Laboratory of Chemical Product Engineering, Department of Chemical Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

4Tropical Renewable Energy Research Center, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

 

Diserahkan: 25 Disember 2024/Diterima: 23 Jun 2025

 

Abstract

Green diesel and biogasoline are low-oxygen compounds in green fuel. Palm oil is a potential source of green fuel production through a hydrodeoxygenation reaction assisted by a specific catalyst. In this research, a series of transition metal (i.e., Fe, Co, Ni, Cu, and Zn) deposited in mordenite (MOR) catalysts were investigated for the hydrodeoxygenation reaction. Oleic acid was used to represent palm oil. All catalysts can convert oleic acid into green fuel products, particularly straight-chain alkane hydrocarbons with low free oxygen content. The Co/MOR catalyst converted 98.82% of oleic acid with a 76% selectivity for green fuel. The performance of the catalyst in one period follows the Sabatier Principle for the catalyst rather than the periodic system of elements.

Keywords: Biogasoline; green diesel; hydrodeoxygenation; mordenite; transition metal

 

Abstrak

Disel hijau dan biogasolin adalah sebatian oksigen rendah dalam bahan api hijau. Minyak sawit merupakan sumber berpotensi pengeluaran bahan api hijau melalui tindak balas hidrodeoksigenasi yang dibantu oleh mangkin tertentu. Dalam penyelidikan ini, satu siri logam peralihan (iaitu, Fe, Co, Ni, Cu dan Zn) yang dimendapkan dalam mangkin mordenit (MOR) telah dikaji untuk tindak balas hidrodeoksigenasi. Asid oleik digunakan untuk mewakili minyak sawit. Semua pemangkin boleh menukar asid oleik kepada produk bahan api hijau, terutamanya hidrokarbon alkana rantai lurus dengan kandungan oksigen bebas yang rendah. Pemangkin Co/MOR menukarkan 98.82% asid oleik dengan selektiviti 76% untuk bahan api hijau. Prestasi pemangkin dalam satu tempoh mengikut Prinsip Sabatier untuk pemangkin dan bukannya sistem unsur berkala.

Kata kunci: Biogasolin; disel hijau; hidrodeoksigenasi; logam peralihan; mordenit

 

RUJUKAN

Ajeeb, W., Gomes, D.M., Neto, R.C. & Baptista, P. 2025. Life cycle analysis of hydrotreated vegetable oils production based on green hydrogen and used cooking oils. Fuel 390: 134749. https://doi.org/10.1016/J.FUEL.2025.134749

Aliana-Nasharuddin, N., Asikin-Mijan, N., Abdulkareem-Alsultan, G., Saiman, M.I., Alharthi, F.A. Alghamdi, A.A. & Taufiq-Yap, Y.H. 2019. Production of green diesel from catalytic deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs. RSC Advances 10(2): 626-642. https://doi.org/10.1039/c9ra08409f

Arun, N., Sharma, R.V. & Dalai, A.K. 2015. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews 48: 240-255. https://doi.org/10.1016/j.rser.2015.03.074

Arun, N., Nanda, S., Hu, Y. & Dalai, A.K. 2021. Hydrodeoxygenation of oleic acid using γ-Al2O3 supported transition metallic catalyst systems: Insight into the development of novel FeCu/γ-Al2O3 catalyst. Molecular Catalysis 523: 111526. https://doi.org/10.1016/j.mcat.2021.111526

Asikin-Mijan, N., Juan, J.C., Taufiq-Yap, Y.H., Ong, H.C., Lin, Y.C., AbdulKareem-Alsultan, G. & Lee, H.V. 2023. Towards sustainable green diesel fuel production: Advancements and opportunities in acid-base catalyzed H2-free deoxygenation process. Catalysis Communications 182: 106741. https://doi.org/10.1016/j.catcom.2023.106741

Ayodele, O.B. 2017. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels. Scientific Reports 7(1): 10008. https://doi.org/10.1038/s41598-017-09706-z

Bardestani, R., Patience, G.S. & Kaliaguine, S. 2019. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 97(11): 2781-2791. https://doi.org/10.1002/cjce.23632

Carli, M.F., Susanto, B.H. & Habibie, T.K. 2018. Sythesis of bioavture through hydrodeoxygenation and catalytic cracking from oleic acid using NiMo/zeolit catalyst. E3S Web of Conferences 67: 02023. https://doi.org/10.1051/e3sconf/20186702023

Chen, L., Janssens, T.V.W., Skoglundh, M. & Grönbeck, H. 2019. Interpretation of NH3-TPD profiles from Cu-CHA using first-principles calculations. Topics in Catalysis 62(1-4): 93-99. https://doi.org/10.1007/s11244-018-1095-y

Choo, M.Y., Oi, L.E., Ling, T.C., Ng, E.P., Lin, Y.C., Centi, G. & Juan, J.C. 2020. Deoxygenation of triolein to green diesel in the H2-free condition: Effect of transition metal oxide supported on zeolite Y. Journal of Analytical and Applied Pyrolysis 147: 104797. https://doi.org/10.1016/j.jaap.2020.104797

Crawford, J.M., Zaccarine, S.F., Kovach, N.C., Smoljan, C.S., Lucero, J., Trewyn, B.G., Pylypenko, S. & Carreon, M.A. 2020. Decarboxylation of stearic acid over Ni/MOR catalysts. Journal of Chemical Technology & Biotechnology 95(1): 102-110. https://doi.org/10.1002/jctb.6211

de Oliveira Camargo, M., Willimann Pimenta, J.L.C., de Oliveira Camargo, M. & Arroyo, P.A. 2020. Green diesel production by solvent-free deoxygenation of oleic acid over nickel phosphide bifunctional catalysts: Effect of the support. Fuel 281: 118719. https://doi.org/10.1016/j.fuel.2020.118719

Douvartzides, S.L., Charisiou, N.D., Papageridis, K.N. & Goula, M.A. 2019. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ıgnition ınternal combustion engines. Energies 12(5): 809. https://doi.org/10.3390/en12050809

Feng, F., Wang, L., Zhang, X. & Wang, Q. 2019. Selective hydroconversion of oleic acid into aviation-fuel-range alkanes over ultrathin Ni/ZSM-5 nanosheets. Industrial and Engineering Chemistry Research 58(14): 5432-5444. https://doi.org/10.1021/acs.iecr.9b00103

Hafriz, R.S.R.M., Nor Shafizah, I., Salmiaton, A., Arifin, N.A., Yunus, R., Taufiq Yap, Y.H. & Abd Halim, S. 2020. Comparative study of transition metal-doped calcined Malaysian dolomite catalysts for WCO deoxygenation reaction. Arabian Journal of Chemistry 13(11): 8146-8159. https://doi.org/10.1016/j.arabjc.2020.09.046

Haryani, N., Harahap, H., Taslim & Irvan. 2020. Biogasoline production via catalytic cracking process using zeolite and zeolite catalyst modified with metals: A review. IOP Conference Series: Materials Science and Engineering 801: 012051. https://doi.org/10.1088/1757-899X/801/1/012051

Hongloi, N., Prapainainar, P. & Prapainainar, C. 2022. Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis 523: 111696. https://doi.org/10.1016/J.MCAT.2021.111696

Hongloi, N., Prapainainar, P., Seubsai, A., Sudsakorn, K. & Prapainainar, C. 2019. Nickel catalyst with different supports for green diesel production. Energy 182: 306-320. https://doi.org/10.1016/j.energy.2019.06.020

I. Istadi, Rahma Amalia, Teguh Riyanto, Didi D. Anggoro, Bunjerd Jongsomjit & Ari Bawono Putranto. 2022. Acids treatment for ımproving catalytic properties and activity of the spent RFCC catalyst for cracking of palm oil to kerosene-diesel fraction fuels. Molecular Catalysis 527: 112420. https://doi.org/10.1016/J.MCAT.2022.112420

Janampelli, S. & Darbha, S. 2019. Highly efficient Pt-MoOx/ZrO2 catalyst for green diesel production. Catalysis Communications 125: 70-76. https://doi.org/10.1016/j.catcom.2019.03.027

Jeon, K.W., Na, H.S., Lee, Y.L., Ahn, S.Y., Kim, K.J., Shim, J.O., Jang, W.J., Jeong, D.W., Nah, I.W. & Roh, H.S. 2019a. Catalytic deoxygenation of oleic acid over a Ni-CeZrO2 catalyst. Fuel 258: 116179. https://doi.org/10.1016/j.fuel.2019.116179

Jeon, K-W., Shim, J-O., Jang, W-J., Lee, D.W., Na, H-S., Kim, H-M., Lee, Y-L., Yoo, S-Y., Roh, H-S., Jeon, B-H., Bae, J.W. & Ko, C.H. 2019b. Effect of calcination temperature on the association between free NiO species and catalytic activity of Ni−Ce0.6Zr0.4O2 deoxygenation catalysts for biodiesel production. Renewable Energy 131: 144-151. https://doi.org/10.1016/j.renene.2018.07.042

Jing, Z-Y., Zhang, T-Q., Shang, J-W., Zhai, M-L., Yang, H., Qiao, C-Z. & Ma, X-Q. 2018. Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons. Journal of Fuel Chemistry and Technology 46(4): 427-440. https://doi.org/10.1016/S1872-5813(18)30018-5

Kamaruzaman, M.F., Taufiq-Yap, Y.H. & Derawi, D. 2020. Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy 134: 105476. https://doi.org/10.1016/j.biombioe.2020.105476

Kochaputi, N., Kongmark, C., Khemthong, P., Butburee, T., Kuboon, S., Worayingyong, A. & Faungnawakij, K. 2019. Catalytic behaviors of supported Cu, Ni, and Co phosphide catalysts for deoxygenation of oleic acid. Catalysts 9(9): 715. https://doi.org/10.3390/catal9090715

Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E. & Lycourghiotis, A. 2016. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Applied Catalysis B: Environmental 181: 156-196. https://doi.org/10.1016/j.apcatb.2015.07.042

Li, W., Li, F., Wang, H., Liao, M., Li, P., Zheng, J., Tu, C. & Li, R. 2020. Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane. Molecular Catalysis 480: 110642. https://doi.org/10.1016/j.mcat.2019.110642

Luciano, V.A., de Paula, F.G., Pinto, P.S., Prates, C.D., Pereira, R.C.G., Ardisson, J.D., Rosmaninho, M.G. & Teixeira, A.P.C. 2022. Thermal cracking of oleic acid promoted by ıron species from ıron ore tailings for the production of ketones and fuels. Fuel 310(Part A): 122290. https://doi.org/10.1016/j.fuel.2021.122290

Mazlan, Nugrahaningtyas, K.D. & Rahmawati, F. 2022. Effect of Fe metal loading on the character of HZSM-5. AIP Conference Proceedings 2391: 050011. https://doi.org/10.1063/5.0072981

Miao, C., Zhou, G., Chen, S., Xie, H. & Zhang, X. 2020. Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate. Renewable Energy 153: 1439-1454. https://doi.org/10.1016/j.renene.2020.02.099

Mirzayanti, Y.W., Kurniawansyah, F., Prajitno, D.H. & Roesyadi, A. 2018. Zn-Mo/HZSM-5 catalyst for gasoil range hydrocarbon production by catalytic hydrocracking of Ceiba pentandra oil. Bulletin of Chemical Reaction Engineering & Catalysis 13(1): 136-143. https://doi.org/10.9767/bcrec.13.1.1508.136-143

Morgan, A.S., Hossain, M.Z., Chowdhury, M.B.I. & Charpentier, P. 2024. ScCO2 decarboxylation of oleic acid to green diesel. The Journal of Supercritical Fluids 205: 106120. https://doi.org/10.1016/J.SUPFLU.2023.106120

Na, J.G., Yi, B.E., Kim, J.N., Yi, K.B., Park, S.Y., Park, J.H., Kim, J.N. & Ko, C.H. 2010. Hydrocarbon production from decarboxylation of fatty acid without hydrogen. Catalysis Today 156(1-2): 44-48. https://doi.org/10.1016/j.cattod.2009.11.008

Neonufa, G.F., Soerawidjaja, T.H., Indarto, A. & Prakoso, T. 2019. An ınnovative technique to suppress alkene-bond in green diesel by Mg–Fe basic soap thermal decarboxylation. International Journal of Ambient Energy 40(4): 374-380. https://doi.org/10.1080/01430750.2017.1399451

Nugraha, R.E., Purnomo, H., Aziz, A., Holilah, H., Bahruji, H., Asikin-Mijan, N., Suprapto, S., Taufiq-Yap, Y.H., Abdul Jalil, A., Hartati, H. & Prasetyoko, D. 2024. The mechanism of oleic acid deoxygenation to green diesel hydrocarbon using porous aluminosilicate catalysts. South African Journal of Chemical Engineering 49: 122-135. https://doi.org/10.1016/J.SAJCE.2024.04.009

Nugrahaningtyas, K.D., Putri, M.M. & Saraswati, T.E. 2020. Metal phase and electron density of transition Metal/HZSM-5. AIP Conference Proceedings 2237: 020003. https://doi.org/10.1063/5.0005561

Nugrahaningtyas, K.D., Hidayat, Y., Lukitawati, R., Mukhsin, S.A. & Sabiilagusti, A.I. 2022a. The effect of hydrogen flow rate and temperature on hydrodeoxygenation of oleic acid over Ni/MOR catalysts. AIP Conference Proceedings 2022: 020041. https://doi.org/10.1063/5.0111684

Nugrahaningtyas, K.D., Kurniawati, M.F., Masykur, A. & 'Abidah Quratul’aini. N. 2022b. Periodic trends in the character of first-row transition metals-based catalysts embedded on mordenite. Moroccan Journal of Chemistry 10(3): 375-386. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.30900

Nugrahaningtyas, K.D., Suharbiansah, R.S.R., Lestari, W.W. & Rahmawati, F. 2022c. Metal phase, electron density, textural properties, and catalytic activity of CoMo based catalyst applied in hydrodeoxygenation of oleic acid. Evergreen 9(2): 283-291. https://doi.org/10.5109/4793665

Nugrahaningtyas, K.D., Heraldy, E., Rachmadani, Hidayat, Y. & Kartini, I. 2021. Effect of synthesis and activation methods on the character of CoMo/ultrastable Y-Zeolite catalysts. Open Chemistry 19(1): 745-754. https://doi.org/10.1515/chem-2021-0064

Nugrahaningtyas, K.D., Putri, I.F., Heraldy, E. & Hidayat, Y. 2018. The catalytic activity of CoMo/USY on deoxygenation reaction of anisole in a batch reactor. IOP Conference Series: Materials Science and Engineering 349: 012030. https://doi.org/10.1088/1757-899X/349/1/012030

Nur Azreena, I., Asikin-Mijan, N., Lau, H.L.N., Hassan, M.A., Mohd Izham, S., Kennedy, E., Stockenhuber, M., Yan, P. & Taufiq-Yap, Y.H. 2024. Hydro-processing of palm fatty acid distillate for diesel-like hydrocarbon fuel production using La-zeolite beta catalyst. Industrial Crops and Products 218: 118907. https://doi.org/10.1016/j.indcrop.2024.118907

Nur Azreena, I., Lau, H.L.N., Asikin-Mijan, N., Hassan, M.A., Mohd Izham, S., Kennedy, E., Stockenhuber, M., Mastuli, M.S., Alharthi, F.A., Alghamdi, A.A. & Taufiq-Yap, Y.H. 2021. A promoter effect on hydrodeoxygenation reactions of oleic acid by zeolite beta catalysts. Journal of Analytical and Applied Pyrolysis 155: 105044. https://doi.org/10.1016/j.jaap.2021.105044

Orozco, L.M., Echeverri, D.A., Sánchez, L. & Rios, L.A. 2017. Second-generation green diesel from castor oil: Development of a new and efficient continuous-production process. Chemical Engineering Journal 322: 149-156. https://doi.org/10.1016/j.cej.2017.04.027

Oyedotun, T.D.T. 2018. X-ray fluorescence (XRF) in the ınvestigation of the composition of earth materials: A review and an overview. Geology, Ecology, and Landscapes 2(2): 148-154. https://doi.org/10.1080/24749508.2018.1452459

Panchuk, V., Yaroshenko, I., Legin, A., Semenov, V. & Kirsanov, D. 2018. Application of chemometric methods to XRF-data - A tutorial review. Analytica Chimica Acta 1040: 19-32. https://doi.org/10.1016/j.aca.2018.05.023

Pazmiño-Viteri, K., Cabezas-Terán, K., Echeverría, D., Cabrera, M. & Taco-Vásquez, S. 2024. Average carbon number analysis and relationship with octane number and PIONA analysis of premium and regular gasoline expended in Ecuador. Processes 12(8): 1706. https://doi.org/10.3390/pr12081706

Pourzolfaghar, H., Abnisa, F., Wan Daud, W.M.A. & Aroua, M.K. 2020. Gas-phase hydrodeoxygenation of phenol over Zn/SiO2 catalysts: Effects of zinc load, temperature, weight hourly space velocity, and H2 volumetric flow rate. Biomass and Bioenergy 138: 105556. https://doi.org/10.1016/J.BIOMBIOE.2020.105556

Prakhar, A., Ojagh, H., Woo, J., Grennfelt, E.L., Olsson, L. & Creaser, D. 2018. Investigating the effect of Fe as a poison for catalytic HDO over sulfided NiMo alumina catalysts. Applied Catalysis B: Environmental 227: 240-251. https://doi.org/10.1016/j.apcatb.2018.01.027

Puspawiningtiyas, E., Prakoso, T., Pratiwi, M., Subagjo, S. & Soerawidjaja, T.H. 2022. Production of biogasoline via pyrolysis of oleic acid  basic soaps. Journal of Engineering and Technological Sciences 54(3): 220311. https://doi.org/10.5614/J.ENG.TECHNOL.SCI.2022.54.3.11

Rogers, K.A. & Zheng, Y. 2016. Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: A review and new ınsights. ChemSusChem 9(14): 1750-1772. https://doi.org/10.1002/cssc.201600144

Safa Gamal, M., Asikin-Mijan, N., Wan Khalit, W.N.A., Arumugam, M., Mohd Izham, S. & Taufiq-Yap, Y.H. 2020. Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology 208: 106519. https://doi.org/10.1016/j.fuproc.2020.106519

Sakizci, M. & Kılınç, L.Ö. 2015. Influence of acid and heavy metal cation exchange treatments on methane adsorption properties of mordenite. Turkish Journal of Chemistry 39(5): 970-983. https://doi.org/10.3906/kim-1501-71

Shim, J-O., Jeong, D-W., Jang, W-J., Jeon, K-W., Kim, S-H., Jeon, B-H., Roh, H-S., Na, J-G., Oh, Y-K., Han, S.S. & Ko, C.H. 2015. Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid. Catalysis Communications 67: 16-20. https://doi.org/10.1016/j.catcom.2015.03.034

Siraj, M. & Ceylan, S. 2025. Investigation of the effect of catalyst support on oleic acid catalytic deoxygenation for green diesel production. Journal of Porous Materials 32: 941-952. https://doi.org/10.1007/S10934-024-01725-2

Tamiyakul, S., Ubolcharoen, W., Tungasmita, D.N. & Jongpatiwut, S. 2015. Conversion of glycerol to aromatic hydrocarbons over Zn-promoted HZSM-5 catalysts. Catalysis Today 256(P2): 325-335. https://doi.org/10.1016/j.cattod.2014.12.030

Taromi, A.A. & Kaliaguine, S. 2018. Green diesel production via continuous hydrotreatment of triglycerides over mesostructured γ-alumina supported NiMo/CoMo catalysts. Fuel Processing Technology 171: 20-30. https://doi.org/10.1016/j.fuproc.2017.10.024

Wang, F., Xu, J., Jiang, J., Liu, P., Li, F., Ye, J. & Zhou, M. 2018. Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst. Fuel 216: 738-746. https://doi.org/10.1016/j.fuel.2017.12.059

Zdainal Abidin, S.N., Lee, H.V., Asikin-Mijan, N., Juan, J.C., Abd Rahman, N., Mastuli, M.S., Taufiq-Yap, Y.H. & Kong, P.S. 2019. Ni, Zn and Fe hydrotalcite-like catalysts for catalytic biomass compound into green biofuel. Pure and Applied Chemistry 92(4): 587-600. https://doi.org/10.1515/pac-2019-0820

Zhang, Z., Bi, G., Zhang, H., Zhang, A., Li, X. & Xie, J. 2019. Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO2-supported CoxNi1−xP catalysts. Fuel 247: 26-35. https://doi.org/10.1016/j.fuel.2019.03.021

Zhao, X., Wei, L., Cheng, S., Cao, Y., Julson, J. & Gu, Z. 2015. Catalytic cracking of carinata oil for hydrocarbon biofuel over fresh and regenerated Zn/Na-ZSM-5. Applied Catalysis A: General 507: 44-55. https://doi.org/10.1016/J.APCATA.2015.09.031

Zheng, Y., Wang, J., Liu, C., Lu, Y., Lin, X., Li, W. & Zheng, Z. 2020. Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio. Renewable Energy 154: 797-812. https://doi.org/10.1016/j.renene.2020.03.058

 

*Pengarang untuk surat-menyurat; email: khoirinadwi@staff.uns.ac.id

 

 

 

 

 

 

 

 

           

sebelumnya